Bidirectional regulation of Ca2+/calmodulin-dependent protein kinase II activity by dopamine D4 receptors in prefrontal cortex.
نویسندگان
چکیده
The dopamine D4 receptor in prefrontal cortex (PFC) plays a key role in normal mental functions and neuropsychiatric disorders. However, the cellular mechanisms and physiological actions of D4 receptors remain elusive. In this study, we found that activation of D4 receptors in PFC exerts a complex regulation of Ca2+/calmodulin-dependent protein kinase II (CaMKII), a multifunctional enzyme critically involved in synaptic plasticity that is fundamental for cognitive and emotional processes. In PFC slices with high neuronal activity, application of the D4 receptor agonist [4-phenylpiperazinyl)-methyl]benzamide (PD168077) produced a potent reduction of the CaMKII activity, whereas in PFC slices with low neuronal activity, PD168077 caused a marked increase of the CaMKII activity. The D4 up-regulation of CaMKII activity was through the stimulation of phospholipase C pathway and elevation of intracellular Ca2+ via ionsitol-1,4,5-triphosphate receptors. These results reveal a bidirectional regulation of CaMKII activity by PFC D4 receptors in response to changes in neuronal activity, and a nonclassic signaling pathway underlying the D4 up-regulation of CaMKII activity. This modulation provides a unique and flexible mechanism for D4 receptors to regulate CaMKII activity, which could lead to dynamic regulation of many targets of CaMKII by D4 receptors.
منابع مشابه
Regulation of NMDA receptors by dopamine D4 signaling in prefrontal cortex.
Increasing evidence has suggested that the interaction between dopaminergic and glutamatergic systems in prefrontal cortex (PFC) plays an important role in normal mental functions and neuropsychiatric disorders. In this study, we examined the regulation of NMDA-type glutamate receptors by the PFC dopamine D4 receptor (one of the principal targets of antipsychotic drugs). Application of the D4 r...
متن کاملActivation of dopamine D4 receptors induces synaptic translocation of Ca2+/calmodulin-dependent protein kinase II in cultured prefrontal cortical neurons.
One of the important targets of dopamine D4 receptors in prefrontal cortex (PFC) is the multifunctional Ca2+/calmodulin-dependent protein kinase II (CaMKII). In the present study, we investigated the effect of D4 receptor activation on subcellular localization of CaMKII. We found that activation of D4 receptors, but not D2 receptors, induced a rapid translocation of alpha-CaMKII from cytosol to...
متن کاملCellular mechanisms for dopamine D4 receptor-induced homeostatic regulation of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors.
Aberrant dopamine D(4) receptor function has been implicated in mental illnesses, including schizophrenia and attention deficit-hyperactivity disorder. Recently we have found that D(4) receptor exerts an activity-dependent bi-directional regulation of AMPA receptor (AMPAR)-mediated synaptic currents in pyramidal neurons of prefrontal cortex (PFC) via the dual control of calcium/calmodulin kinas...
متن کاملRestoration of glutamatergic transmission by dopamine D4 receptors in stressed animals.
The prefrontal cortex (PFC), a key brain region for cognitive and emotional processes, is highly regulated by dopaminergic inputs. The dopamine D4 receptor, which is enriched in PFC, has been implicated in mental disorders, such as attention deficit-hyperactivity disorder and schizophrenia. Recently we have found homeostatic regulation of AMPA receptor-mediated synaptic transmission in PFC pyra...
متن کاملPotentiation of NMDA receptor currents by dopamine D1 receptors in prefrontal cortex.
Interactions between dopamine and N-methyl-D-aspartate receptors (NMDARs) in prefrontal cortex (PFC) and other brain regions are believed to play an important role in normal mental function and neuropsychiatric disorders. In this study, we examined the regulation of NMDAR currents by the dopamine D1 receptor in PFC pyramidal neurons. Application of the D1 receptor agonist SKF81297 caused a prom...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular pharmacology
دوره 66 4 شماره
صفحات -
تاریخ انتشار 2004